Back to Search Start Over

Uniaxial anisotropy, intrinsic and extrinsic damping in Co$_{2}$FeSi Heusler alloy thin films

Authors :
Hazra, Binoy Krishna
Kaul, S. N.
Srinath, S.
Raja, M. Manivel
Publication Year :
2019

Abstract

Ferromagnetic resonance (FMR) technique has been used to study the magnetization relaxation processes and magnetic anisotropy in two different series of the Co2FeSi (CFS) Heusler alloy thin films, deposited on the Si(111) substrate by UHV sputtering. While the CFS films of fixed (50 nm) thickness, deposited at different substrate temperatures (TS) ranging from room temperature (RT) to 600^C, constitute the series-I, the CFS films with thickness t varying from 12 nm to 100 nm and deposited at 550^C make up the series-II. In series-I, the CFS films deposited at TS = RT and 200^C are completely amorphous, the one at TS = 300^C is partially crystalline, and those at TS equal 450^C, 550^C and 600^C are completely crystalline with B2 order. By contrast, all the CFS films in series-II are in the fully-developed B2 crystalline state. Irrespective of the strength of disorder and film thickness, angular variation of the resonance field in the film plane unambiguously establishes the presence of global in-plane uniaxial anisotropy. Angular variation of the linewidth in the film plane reveals that, in the CFS thin films of varying thickness, a crossover from the in-plane local four-fold symmetry (cubic anisotropy) to local two-fold symmetry (uniaxial anisotropy) occurs as t exceeds 50 nm. Gilbert damping parameter {\alpha} decreases monotonously from 0.047 to 0.0078 with decreasing disorder strength (increasing TS) and jumps from 0.008 for the CFS film with t = 50 nm to 0.024 for the film with t equal 75 nm. Such variations of {\alpha} with TS and t are understood in terms of the changes in the total (spin-up and spin-down) density of states at the Fermi level caused by the disorder and film thickness.<br />Comment: 24 pages, 16 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1903.02976
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1361-6463/ab202c