Back to Search Start Over

A unified model for stress-driven rearrangement instabilities

Authors :
Kholmatov, Shokhrukh Yu.
Piovano, Paolo
Source :
Archive for Rational Mechanics and Analysis (2020)
Publication Year :
2019

Abstract

A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. Existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. Compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number $m$ of connected components, of sets of finite perimeter. Finally, it is shown that, as $m\to\infty$, the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.<br />Comment: 60 pages, 4 figures

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Journal :
Archive for Rational Mechanics and Analysis (2020)
Publication Type :
Report
Accession number :
edsarx.1902.06535
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s00205-020-01546-y