Back to Search Start Over

On asymptotic properties of the generalized Dirichlet $L$-functions

Authors :
Ma, Rong
Niu, Yana
Zhang, Yulong
Source :
completed in 2018
Publication Year :
2019

Abstract

Let $q\ge3$ be an integer, $\chi$ denote a Dirichlet character modulo $q$, for any real number $a\ge 0$, we define the generalized Dirichlet $L$-functions $$ L(s,\chi,a)=\sum_{n=1}^{\infty}\frac{\chi(n)}{(n+a)^s}, $$ where $s=\sigma+it$ with $\sigma>1$ and $t$ both real. It can be extended to all $s$ by analytic continuation. In this paper, we study the mean value properties of the generalized Dirichlet $L$-functions, and obtain several sharp asymptotic formulae by using analytic method.<br />Comment: 15 pages,accepted by IJNT

Details

Database :
arXiv
Journal :
completed in 2018
Publication Type :
Report
Accession number :
edsarx.1902.03846
Document Type :
Working Paper