Back to Search
Start Over
On asymptotic properties of the generalized Dirichlet $L$-functions
- Source :
- completed in 2018
- Publication Year :
- 2019
-
Abstract
- Let $q\ge3$ be an integer, $\chi$ denote a Dirichlet character modulo $q$, for any real number $a\ge 0$, we define the generalized Dirichlet $L$-functions $$ L(s,\chi,a)=\sum_{n=1}^{\infty}\frac{\chi(n)}{(n+a)^s}, $$ where $s=\sigma+it$ with $\sigma>1$ and $t$ both real. It can be extended to all $s$ by analytic continuation. In this paper, we study the mean value properties of the generalized Dirichlet $L$-functions, and obtain several sharp asymptotic formulae by using analytic method.<br />Comment: 15 pages,accepted by IJNT
- Subjects :
- Mathematics - Number Theory
11M20
F.2.2
Subjects
Details
- Database :
- arXiv
- Journal :
- completed in 2018
- Publication Type :
- Report
- Accession number :
- edsarx.1902.03846
- Document Type :
- Working Paper