Back to Search
Start Over
A General Framework for Prediction in Time Series Models
- Publication Year :
- 2019
-
Abstract
- In this paper we propose a general framework to analyze prediction in time series models and show how a wide class of popular time series models satisfies this framework. We postulate a set of high-level assumptions, and formally verify these assumptions for the aforementioned time series models. Our framework coincides with that of Beutner et al. (2019, arXiv:1710.00643) who establish the validity of conditional confidence intervals for predictions made in this framework. The current paper therefore complements the results in Beutner et al. (2019, arXiv:1710.00643) by providing practically relevant applications of their theory.
- Subjects :
- Economics - Econometrics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1902.01622
- Document Type :
- Working Paper