Back to Search Start Over

Key $^{19}$Ne states identified affecting $\gamma$-ray emission from $^{18}$F in novae

Authors :
Hall, M. R.
Barbadian, D. W.
Baugher, T.
Lepailleur, A.
Pain, S. D.
Ratkiewicz, A.
Ahn, S.
Allen, J. M.
Anderson, J. T.
Ayangeakaa, A. D.
Blackmon, J. C.
Burcher, S.
Carpenter, M. P.
Cha, S. M.
Chae, K. Y.
Chipps, K. A.
Cizewski, J. A.
Febbraro, M.
Hall, O.
Hu, J.
Jiang, C. L.
Jones, K. L.
Lee, E. J.
O'Malley, P. D.
Ota, S.
Rasco, B. C.
Santiago-Gonzalez, D.
Seweryniak, D.
Sims, H.
Smith, K.
Tan, W. P.
Thompson, P.
Thornsberry, C.
Varner, R. L.
Walter, D.
Wilson, G. L.
Zhu, S.
Source :
Phys. Rev. Lett. 122, 052701, 2019
Publication Year :
2019

Abstract

Detection of nuclear-decay $\gamma$ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense $\gamma$-ray flux is thought to be annihilation radiation from the $\beta^+$ decay of $^{18}$F, which is destroyed prior to decay by the $^{18}$F($p$,$\alpha$)$^{15}$O reaction. Estimates of $^{18}$F production had been uncertain, however, because key near-threshold levels in the compound nucleus, $^{19}$Ne, had yet to be identified. This Letter reports the first measurement of the $^{19}$F($^{3}$He,$t\gamma$)$^{19}$Ne reaction, in which the placement of two long-sought 3/2$^+$ levels is suggested via triton-$\gamma$-$\gamma$ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of $1.5-17$ at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.<br />Comment: 6 pages, 4 figures

Subjects

Subjects :
Nuclear Experiment

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 122, 052701, 2019
Publication Type :
Report
Accession number :
edsarx.1902.00106
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.122.052701