Back to Search
Start Over
Quantitative Verification of Masked Arithmetic Programs against Side-Channel Attacks
- Publication Year :
- 2019
-
Abstract
- Power side-channel attacks, which can deduce secret data via statistical analysis, have become a serious threat. Masking is an effective countermeasure for reducing the statistical dependence between secret data and side-channel information. However, designing masking algorithms is an error-prone process. In this paper, we propose a hybrid approach combing type inference and model-counting to verify masked arithmetic programs against side-channel attacks. The type inference allows an efficient, lightweight procedure to determine most observable variables whereas model-counting accounts for completeness. In case that the program is not perfectly masked, we also provide a method to quantify the security level of the program. We implement our methods in a tool QMVerif and evaluate it on cryptographic benchmarks. The experimental results show the effectiveness and efficiency of our approach.<br />Comment: 19 pages
- Subjects :
- Computer Science - Cryptography and Security
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1901.09706
- Document Type :
- Working Paper