Back to Search Start Over

A note on coverings of virtual knots

Authors :
Nakamura, Takuji
Nakanishi, Yasutaka
Satoh, Shin
Publication Year :
2018

Abstract

For a virtual knot $K$ and an integer $r\geq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,\dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0\mbox{ and }2\leq r\leq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.<br />Comment: 9 pages, 6 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1811.10852
Document Type :
Working Paper