Back to Search
Start Over
A note on coverings of virtual knots
- Publication Year :
- 2018
-
Abstract
- For a virtual knot $K$ and an integer $r\geq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,\dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0\mbox{ and }2\leq r\leq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.<br />Comment: 9 pages, 6 figures
- Subjects :
- Mathematics - Geometric Topology
57M25, 57M27
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1811.10852
- Document Type :
- Working Paper