Back to Search Start Over

Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis

Authors :
Finkelshtein, Dmitri
Kondratiev, Yuri
Lytvynov, Eugene
Oliveira, Maria Joao
Streit, Ludwig
Source :
J. Math. Anal. Appl. 479 (2019), 162-184
Publication Year :
2018

Abstract

For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.

Details

Database :
arXiv
Journal :
J. Math. Anal. Appl. 479 (2019), 162-184
Publication Type :
Report
Accession number :
edsarx.1811.10424
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jmaa.2019.06.021