Back to Search
Start Over
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
- Source :
- J. Math. Anal. Appl. 479 (2019), 162-184
- Publication Year :
- 2018
-
Abstract
- For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.
- Subjects :
- Mathematics - Functional Analysis
Mathematics - Complex Variables
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Math. Anal. Appl. 479 (2019), 162-184
- Publication Type :
- Report
- Accession number :
- edsarx.1811.10424
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.jmaa.2019.06.021