Back to Search Start Over

Development of a Quality Assurance Process for the SoLid Experiment

Authors :
Abreu, Y.
Amhis, Y.
Ban, G.
Beaumont, W.
Binet, S.
Bongrand, M.
Boursette, D.
Castle, B. C.
Chanal, H.
Clark, K.
Coupé, B.
Crochet, P.
Cussans, D.
De Roeck, A.
Durand, D.
Fallot, M.
Ghys, L.
Giot, L.
Graves, K.
Guillon, B.
Henaff, D.
Hosseini, B.
Ihantola, S.
Jenzer, S.
Kalcheva, S.
Kalousis, L. N.
Labare, M.
Lehaut, G.
Manley, S.
Manzanillas, L.
Mermans, J.
Michiels, I.
Monteil, S.
Moortgat, C.
Newbold, D.
Park, J.
Pestel, V.
Petridis, K.
Piñera, I.
Popescu, L.
Ryckbosch, D.
Ryder, N.
Saunders, D.
Schune, M. -H.
Settimo, M.
Simard, L.
Vacheret, A.
Vandierendonck, G.
Van Dyck, S.
Van Mulders, P.
van Remortel, N.
Vercaemer, S.
Verstraeten, M.
Viaud, B.
Weber, A.
Yermia, F.
Source :
JINST 14 (2019) no.02, P02014
Publication Year :
2018

Abstract

The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK$\bullet$CEN, in Belgium. The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with $^6$LiF:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. % The polyvinyltoluene scintillator is used as an $\overline{\nu}_e$ target for the inverse beta decay of ($\overline{\nu}_e + p \rightarrow e^{+}+n$), with the $^6$LiF:ZnS(Ag) sheets used for associated neutron detection. Scintillation signals are read out by a network of wavelength shifting fibres connected to multipixel photon counters. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around $\mathcal{O}$(10)\% in the energy spectrum of reactor $\overline{\nu}_e$. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50 \% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed.<br />Comment: Submitted to JINST

Details

Database :
arXiv
Journal :
JINST 14 (2019) no.02, P02014
Publication Type :
Report
Accession number :
edsarx.1811.05244
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1748-0221/14/02/P02014