Back to Search Start Over

PreCo: A Large-scale Dataset in Preschool Vocabulary for Coreference Resolution

Authors :
Chen, Hong
Fan, Zhenhua
Lu, Hao
Yuille, Alan L.
Rong, Shu
Publication Year :
2018

Abstract

We introduce PreCo, a large-scale English dataset for coreference resolution. The dataset is designed to embody the core challenges in coreference, such as entity representation, by alleviating the challenge of low overlap between training and test sets and enabling separated analysis of mention detection and mention clustering. To strengthen the training-test overlap, we collect a large corpus of about 38K documents and 12.4M words which are mostly from the vocabulary of English-speaking preschoolers. Experiments show that with higher training-test overlap, error analysis on PreCo is more efficient than the one on OntoNotes, a popular existing dataset. Furthermore, we annotate singleton mentions making it possible for the first time to quantify the influence that a mention detector makes on coreference resolution performance. The dataset is freely available at https://preschool-lab.github.io/PreCo/.<br />Comment: EMNLP 2018

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1810.09807
Document Type :
Working Paper