Back to Search
Start Over
Concentrating solutions for a fractional Kirchhoff equation with critical growth
- Source :
- Asymptotic Analysis (2019)
- Publication Year :
- 2018
-
Abstract
- In this paper we consider the following class of fractional Kirchhoff equations with critical growth: \begin{equation*} \left\{ \begin{array}{ll} \left(\varepsilon^{2s}a+\varepsilon^{4s-3}b\int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx\right)(-\Delta)^{s}u+V(x)u=f(u)+|u|^{2^{*}_{s}-2}u \quad &\mbox{ in } \mathbb{R}^{3}, \\ u\in H^{s}(\mathbb{R}^{3}), \quad u>0 &\mbox{ in } \mathbb{R}^{3}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a small parameter, $a, b>0$ are constants, $s\in (\frac{3}{4}, 1)$, $2^{*}_{s}=\frac{6}{3-2s}$ is the fractional critical exponent, $(-\Delta)^{s}$ is the fractional Laplacian operator, $V$ is a positive continuous potential and $f$ is a superlinear continuous function with subcritical growth. Using penalization techniques and variational methods, we prove the existence of a family of positive solutions $u_{\varepsilon}$ which concentrates around a local minimum of $V$ as $\varepsilon\rightarrow 0$.<br />Comment: arXiv admin note: text overlap with arXiv:1810.04561
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Journal :
- Asymptotic Analysis (2019)
- Publication Type :
- Report
- Accession number :
- edsarx.1810.09281
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3233/ASY-191543