Back to Search Start Over

Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor

Authors :
Wang, Tao
Lourette, Sean
Kelley, Sean R. O
Kayci, Metin
Band, Y. B.
Kimball, Derek F. Jackson
Sushkov, Alexander O.
Budker, Dmitry
Source :
Phys. Rev. Applied 11, 044041 (2019)
Publication Year :
2018

Abstract

Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting niobium surface. We find that the levitating particles are trapped in potential minima associated with residual magnetic flux pinned by the superconductor and, using an optical technique, characterize the quasiperiodic motion of the particles in these traps.<br />Comment: 9 pages, 10 figures

Details

Database :
arXiv
Journal :
Phys. Rev. Applied 11, 044041 (2019)
Publication Type :
Report
Accession number :
edsarx.1810.08748
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevApplied.11.044041