Back to Search Start Over

Integration of Quantum Emitters with Lithium Niobate Photonics

Authors :
Aghaeimeibodi, Shahriar
Desiatov, Boris
Kim, Je-Hyung
Lee, Chang-Min
Buyukkaya, Mustafa Atabey
Karasahin, Aziz
Richardson, Christopher J. K.
Leavitt, Richard P.
Lončar, Marko
Waks, Edo
Source :
Appl. Phys. Lett. 113, 221102 (2018)
Publication Year :
2018

Abstract

The integration of quantum emitters with integrated photonics enables complex quantum photonic circuits that are necessary for photonic implementation of quantum simulators, computers, and networks. Thin-film lithium niobate is an ideal material substrate for quantum photonics because it can tightly confine light in small waveguides and has a strong electro-optic effect that can switch and modulate single photons at low power and high speed. However, lithium niobite lacks efficient single-photon emitters, which are essential for scalable quantum photonic circuits. We demonstrate deterministic coupling of single-photon emitters with a lithium niobate photonic chip. The emitters are composed of InAs quantum dots embedded in an InP nanobeam, which we transfer to a lithium niobate waveguide with nanoscale accuracy using a pick-and place approach. An adiabatic taper transfers single photons emitted into the nanobeam to the lithium niobate waveguide with high efficiency. We verify the single photon nature of the emission using photon correlation measurements performed with an on-chip beamsplitter. Our results demonstrate an important step toward fast, reconfigurable quantum photonic circuits for quantum information processing.

Details

Database :
arXiv
Journal :
Appl. Phys. Lett. 113, 221102 (2018)
Publication Type :
Report
Accession number :
edsarx.1810.05701
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.5054865