Back to Search
Start Over
The restricted sumsets in $\mathbb{Z}_n$
- Publication Year :
- 2018
-
Abstract
- Let $h\geq 2$ be a positive integer. For any subset $\mathcal{A}\subset \mathbb{Z}_n$, let $h^{\wedge}\mathcal{A}$ be the set of the elements of $\mathbb{Z}_n$ which are sums of $h$ distinct elements of $\mathcal{A}$. In this paper, we obtain some new results on $4^{\wedge}\mathcal{A}$ and $5^{\wedge}\mathcal{A}$. For example, we show that if $|\mathcal{A}|\geq 0.4045n$ and $n$ is odd, then $4^{\wedge}\mathcal{A}=\mathbb{Z}_{n}$; Under some conditions, if $n$ is even and $|\mathcal{A}|$ is close to $n/4$, then $4^{\wedge}\mathcal{A}=\mathbb{Z}_{n}$.
- Subjects :
- Mathematics - Number Theory
11B13
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1810.05346
- Document Type :
- Working Paper