Back to Search Start Over

The restricted sumsets in $\mathbb{Z}_n$

Authors :
Tang, Min
Wei, Meng-Ting
Publication Year :
2018

Abstract

Let $h\geq 2$ be a positive integer. For any subset $\mathcal{A}\subset \mathbb{Z}_n$, let $h^{\wedge}\mathcal{A}$ be the set of the elements of $\mathbb{Z}_n$ which are sums of $h$ distinct elements of $\mathcal{A}$. In this paper, we obtain some new results on $4^{\wedge}\mathcal{A}$ and $5^{\wedge}\mathcal{A}$. For example, we show that if $|\mathcal{A}|\geq 0.4045n$ and $n$ is odd, then $4^{\wedge}\mathcal{A}=\mathbb{Z}_{n}$; Under some conditions, if $n$ is even and $|\mathcal{A}|$ is close to $n/4$, then $4^{\wedge}\mathcal{A}=\mathbb{Z}_{n}$.

Subjects

Subjects :
Mathematics - Number Theory
11B13

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1810.05346
Document Type :
Working Paper