Back to Search
Start Over
Learning Finer-class Networks for Universal Representations
- Publication Year :
- 2018
-
Abstract
- Many real-world visual recognition use-cases can not directly benefit from state-of-the-art CNN-based approaches because of the lack of many annotated data. The usual approach to deal with this is to transfer a representation pre-learned on a large annotated source-task onto a target-task of interest. This raises the question of how well the original representation is "universal", that is to say directly adapted to many different target-tasks. To improve such universality, the state-of-the-art consists in training networks on a diversified source problem, that is modified either by adding generic or specific categories to the initial set of categories. In this vein, we proposed a method that exploits finer-classes than the most specific ones existing, for which no annotation is available. We rely on unsupervised learning and a bottom-up split and merge strategy. We show that our method learns more universal representations than state-of-the-art, leading to significantly better results on 10 target-tasks from multiple domains, using several network architectures, either alone or combined with networks learned at a coarser semantic level.<br />Comment: British Machine Vision Conference (BMVC) 2018
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1810.02126
- Document Type :
- Working Paper