Back to Search
Start Over
Improved Test of Local Lorentz Invariance from a Deterministic Preparation of Entangled States
- Source :
- Phys. Rev. Lett. 122, 123605 (2019)
- Publication Year :
- 2018
-
Abstract
- The high degree of control available over individual atoms enables precision tests of fundamental physical concepts. In this Letter, we experimentally study how precision measurements can be improved by preparing entangled states immune to the dominant source of decoherence. Using \Ca ions, we explicitly demonstrate the advantage from entanglement on a precision test of local Lorentz invariance for the electron. Reaching the quantum projection noise limit set by quantum mechanics, we observe for bipartite entangled states the expected gain of a factor of two in the precision. Under specific conditions, multipartite entangled states may yield substantial further improvements. Our measurements improve the previous best limit for local Lorentz invariance of the electron using \Ca ions by factor of two to four to about $5\times10^{-19}$.
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. Lett. 122, 123605 (2019)
- Publication Type :
- Report
- Accession number :
- edsarx.1809.09807
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevLett.122.123605