Back to Search
Start Over
Holographic quantization of linearized higher-spin gravity in the de Sitter causal patch
- Publication Year :
- 2018
-
Abstract
- We study the dS/CFT duality between minimal type-A higher-spin gravity and the free Sp(2N) vector model. We consider the bulk spacetime as "elliptic" de Sitter space dS_4/Z_2, in which antipodal points have been identified. We apply a technique from arXiv:1509.05890, which extracts the quantum-mechanical commutators (or Poisson brackets) of the linearized bulk theory in an *observable patch* of dS_4/Z_2 directly from the boundary 2-point function. Thus, we construct the Lorentzian commutators of the linearized bulk theory from the Euclidean CFT. In the present paper, we execute this technique for the entire higher-spin multiplet, using a higher-spin-covariant language, which provides a promising framework for the future inclusion of bulk interactions. Aside from its importance for dS/CFT, our construction of a Hamiltonian structure for a bulk causal region should be of interest within higher-spin theory itself. The price we pay is a partial symmetry breaking, from the full dS group (and its higher-spin extension) to the symmetry group of an observable patch. While the boundary field theory plays a role in our arguments, the results can be fully expressed within a boundary *particle mechanics*. Bulk fields arise from this boundary mechanics via a version of second quantization.<br />Comment: 65 pages, 2 figures; v2: JHEP version; slightly expanded discussion and references; v3: corrected minor error in reality conditions; v4: corrected signs, in light of later work on local/twistor dictionary
- Subjects :
- High Energy Physics - Theory
General Relativity and Quantum Cosmology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1809.07270
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/JHEP11(2018)033