Back to Search
Start Over
On multi-solitons for the energy-critical wave equation in dimension 5
- Publication Year :
- 2018
-
Abstract
- In this paper, we construct $K$-solitons of the focusing energy-critical nonlinear wave equation in five-dimensional space, i.e. solutions $u$ of the equation such that \begin{equation*} \|\nabla_{t,x}u(t)-\nabla_{t,x}\big(\sum_{k=1}^{K}W_{k}(t)\big)\|_{L^{2}}\to 0\quad \mathrm{as}\ t\to \infty, \end{equation*} where for any $k\in \{1,\dots,K\}$, $W_{k}$ is Lorentz transform of the explicit standing soliton $W(x)=(1+|x|^{2}/15)^{-3/2}$, with any speed $\boldsymbol{\ell}_{k}\in \mathbb{R}^{5}$ ,$|\boldsymbol{\ell}_{k}|<1$ ($\boldsymbol{\ell}_{k'}\ne \boldsymbol{\ell}_{k}$ for $k'\ne k$) satisfying an explicit smallness condition.<br />Comment: 30 pages. minor revisions. arXiv admin note: substantial text overlap with arXiv:1708.09712, arXiv:1504.01595 by other authors
- Subjects :
- Mathematics - Analysis of PDEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1809.05414
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/1361-6544/ab46ec