Back to Search Start Over

On uniqueness in Steiner problem

Authors :
Basok, Mikhail
Cherkashin, Danila
Rastegaev, Nikita
Teplitskaya, Yana
Publication Year :
2018

Abstract

We prove that the set of $n$-point configurations for which the solution of the planar Steiner problem is not unique has the Hausdorff dimension at most $2n-1$ (as a subset of $\mathbb{R}^{2n}$). Moreover, we show that the Hausdorff dimension of the set of $n$-point configurations on which at least two locally minimal trees have the same length is also at most $2n-1$. Methods we use essentially require rely upon the theory of subanalytic sets developed in~\cite{bierstone1988semianalytic}. Motivated by this approach we develop a general setup for the similar problem of uniqueness of the Steiner tree where the Euclidean plane is replace by an arbitrary analytic Riemannian manifold $M$. In this setup we argue that the set of configurations possessing two locally-minimal trees of the same length either has the dimension $n\dim M-1$ or has a non-empty interior. We provide an example of a two-dimensional surface for which the last alternative holds. In addition to abovementioned results, we study the set of set of $n$-point configurations for which there is a unique solution of the Steiner problem in $\mathbb{R}^d$. We show that this set is path-connected.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1809.01463
Document Type :
Working Paper