Back to Search Start Over

Geometric Operator Convolutional Neural Network

Authors :
Ma, Yangling
Luo, Yixin
Yang, Zhouwang
Publication Year :
2018

Abstract

The Convolutional Neural Network (CNN) has been successfully applied in many fields during recent decades; however it lacks the ability to utilize prior domain knowledge when dealing with many realistic problems. We present a framework called Geometric Operator Convolutional Neural Network (GO-CNN) that uses domain knowledge, wherein the kernel of the first convolutional layer is replaced with a kernel generated by a geometric operator function. This framework integrates many conventional geometric operators, which allows it to adapt to a diverse range of problems. Under certain conditions, we theoretically analyze the convergence and the bound of the generalization errors between GO-CNNs and common CNNs. Although the geometric operator convolution kernels have fewer trainable parameters than common convolution kernels, the experimental results indicate that GO-CNN performs more accurately than common CNN on CIFAR-10/100. Furthermore, GO-CNN reduces dependence on the amount of training examples and enhances adversarial stability. In the practical task of medically diagnosing bone fractures, GO-CNN obtains 3% improvement in terms of the recall.<br />Comment: 16 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1809.01016
Document Type :
Working Paper