Back to Search
Start Over
Hypernetwork Knowledge Graph Embeddings
- Publication Year :
- 2018
-
Abstract
- Knowledge graphs are graphical representations of large databases of facts, which typically suffer from incompleteness. Inferring missing relations (links) between entities (nodes) is the task of link prediction. A recent state-of-the-art approach to link prediction, ConvE, implements a convolutional neural network to extract features from concatenated subject and relation vectors. Whilst results are impressive, the method is unintuitive and poorly understood. We propose a hypernetwork architecture that generates simplified relation-specific convolutional filters that (i) outperforms ConvE and all previous approaches across standard datasets; and (ii) can be framed as tensor factorization and thus set within a well established family of factorization models for link prediction. We thus demonstrate that convolution simply offers a convenient computational means of introducing sparsity and parameter tying to find an effective trade-off between non-linear expressiveness and the number of parameters to learn.
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1808.07018
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/978-3-030-30493-5_52