Back to Search Start Over

Classes of graphs with e-positive chromatic symmetric function

Authors :
Foley, Angèle M.
Hoàng, Chính T.
Merkel, Owen D.
Publication Year :
2018

Abstract

In the mid-1990s, Stanley and Stembridge conjectured that the chromatic symmetric functions of claw-free co-comparability (also called incomparability) graphs were e-positive. The quest for the proof of this conjecture has led to an examination of other, related graph classes. In 2013 Guay-Paquet proved that if unit interval graphs are e-positive, that implies claw-free incomparability graphs are as well. Inspired by this approach, we consider a related case and prove that unit interval graphs whose complement is also a unit interval graph are e-positive. We introduce the concept of strongly $e$-positive to denote a graph whose induced subgraphs are all e-positive, and conjecture that a graph is strongly e-positive if and only if it is (claw, net)-free.<br />Comment: 20 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1808.03391
Document Type :
Working Paper