Back to Search Start Over

On the cardinality of unique range sets with weight one

Authors :
Chakraborty, Bikash
Chakraborty, Sagar
Source :
Ukrainian Mathematical Journal, Vol. 72, No. 7, December, 2020 (Ukrainian Original Vol. 72, No. 7, July, 2020)
Publication Year :
2018

Abstract

Two meromorphic functions $f$ and $g$ are said to share the set $S\subset \mathbb{C}\cup\{\infty\}$ with weight $l\in\mathbb{N}\cup\{0\}\cup\{\infty\}$, if $E_{f}(S,l)=E_{g}(S,l)$ where $$E_{f}(S,l)=\bigcup\limits_{a \in S}\{(z,t) \in \mathbb{C}\times\mathbb{N}~ |~ f(z)=a ~\text{with~ multiplicity}~ p\},$$ where $t=p$ if $p\leq l$ and $t=p+1$ if $p>l$. In this paper, we improve and supplement the result of L. W. Liao and C. C. Yang (On the cardinality of the unique range sets for meromorphic and entire functions, Indian J. Pure appl. Math., 31 (2000), no. 4, 431-440) by showing that there exist a finite set $S$ with cardinality $\geq 13$ such that $E_{f}(S,1)=E_{g}(S,1)$ implies $f\equiv g$.<br />Comment: 10 pages. arXiv admin note: text overlap with arXiv:1711.08808, arXiv:1608.02125

Details

Database :
arXiv
Journal :
Ukrainian Mathematical Journal, Vol. 72, No. 7, December, 2020 (Ukrainian Original Vol. 72, No. 7, July, 2020)
Publication Type :
Report
Accession number :
edsarx.1807.08619
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s11253-020-01849-z