Back to Search
Start Over
On the cardinality of unique range sets with weight one
- Source :
- Ukrainian Mathematical Journal, Vol. 72, No. 7, December, 2020 (Ukrainian Original Vol. 72, No. 7, July, 2020)
- Publication Year :
- 2018
-
Abstract
- Two meromorphic functions $f$ and $g$ are said to share the set $S\subset \mathbb{C}\cup\{\infty\}$ with weight $l\in\mathbb{N}\cup\{0\}\cup\{\infty\}$, if $E_{f}(S,l)=E_{g}(S,l)$ where $$E_{f}(S,l)=\bigcup\limits_{a \in S}\{(z,t) \in \mathbb{C}\times\mathbb{N}~ |~ f(z)=a ~\text{with~ multiplicity}~ p\},$$ where $t=p$ if $p\leq l$ and $t=p+1$ if $p>l$. In this paper, we improve and supplement the result of L. W. Liao and C. C. Yang (On the cardinality of the unique range sets for meromorphic and entire functions, Indian J. Pure appl. Math., 31 (2000), no. 4, 431-440) by showing that there exist a finite set $S$ with cardinality $\geq 13$ such that $E_{f}(S,1)=E_{g}(S,1)$ implies $f\equiv g$.<br />Comment: 10 pages. arXiv admin note: text overlap with arXiv:1711.08808, arXiv:1608.02125
- Subjects :
- Mathematics - Complex Variables
30D35
Subjects
Details
- Database :
- arXiv
- Journal :
- Ukrainian Mathematical Journal, Vol. 72, No. 7, December, 2020 (Ukrainian Original Vol. 72, No. 7, July, 2020)
- Publication Type :
- Report
- Accession number :
- edsarx.1807.08619
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s11253-020-01849-z