Back to Search Start Over

Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms

Authors :
Delorme, Patrick
Knop, Friedrich
Krötz, Bernhard
Schlichtkrull, Henrik
Source :
J. Amer. Math. Soc. 34 (2021), no. 3, 815-908
Publication Year :
2018

Abstract

Given a unimodular real spherical space $Z=G/H$ we construct for each boundary degeneration $Z_I=G/H_I$ of $Z$ a Bernstein morphism $B_I: L^2(Z_I)_{\rm disc }\to L^2(Z)$. We show that $B:=\bigoplus_I B_I$ provides an isospectral $G$-equivariant morphism onto $L^2(Z)$. Further, the maps $B_I$ are finite linear combinations of orthogonal projections which translates in the known cases where $Z$ is a group or a symmetric space into the familiar Maass-Selberg relations. As a corollary we obtain that $L^2(Z)_{\rm disc }\neq \emptyset$ provided that ${\mathfrak h}^\perp$ contains elliptic elements in its interior.<br />Comment: 101 pages. Final version. Accepted to J. Amer. Math. Soc

Details

Database :
arXiv
Journal :
J. Amer. Math. Soc. 34 (2021), no. 3, 815-908
Publication Type :
Report
Accession number :
edsarx.1807.07541
Document Type :
Working Paper
Full Text :
https://doi.org/10.1090/jams/971