Back to Search
Start Over
Plancherel theory for real spherical spaces: Construction of the Bernstein morphisms
- Source :
- J. Amer. Math. Soc. 34 (2021), no. 3, 815-908
- Publication Year :
- 2018
-
Abstract
- Given a unimodular real spherical space $Z=G/H$ we construct for each boundary degeneration $Z_I=G/H_I$ of $Z$ a Bernstein morphism $B_I: L^2(Z_I)_{\rm disc }\to L^2(Z)$. We show that $B:=\bigoplus_I B_I$ provides an isospectral $G$-equivariant morphism onto $L^2(Z)$. Further, the maps $B_I$ are finite linear combinations of orthogonal projections which translates in the known cases where $Z$ is a group or a symmetric space into the familiar Maass-Selberg relations. As a corollary we obtain that $L^2(Z)_{\rm disc }\neq \emptyset$ provided that ${\mathfrak h}^\perp$ contains elliptic elements in its interior.<br />Comment: 101 pages. Final version. Accepted to J. Amer. Math. Soc
- Subjects :
- Mathematics - Representation Theory
22F30, @@E46, 53C35, 22E40
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Amer. Math. Soc. 34 (2021), no. 3, 815-908
- Publication Type :
- Report
- Accession number :
- edsarx.1807.07541
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1090/jams/971