Back to Search Start Over

Ortho-polygon Visibility Representations of 3-connected 1-plane Graphs

Authors :
Liotta, Giuseppe
Montecchiani, Fabrizio
Tappini, Alessandra
Publication Year :
2018

Abstract

An ortho-polygon visibility representation $\Gamma$ of a $1$-plane graph $G$ (OPVR of $G$) is an embedding preserving drawing that maps each vertex of $G$ to a distinct orthogonal polygon and each edge of $G$ to a vertical or horizontal visibility between its end-vertices. The representation $\Gamma$ has vertex complexity $k$ if every polygon of $\Gamma$ has at most $k$ reflex corners. It is known that $3$-connected $1$-plane graphs admit an OPVR with vertex complexity at most twelve, while vertex complexity at least two may be required in some cases. In this paper, we reduce this gap by showing that vertex complexity five is always sufficient, while vertex complexity four may be required in some cases. These results are based on the study of the combinatorial properties of the B-, T-, and W-configurations in $3$-connected $1$-plane graphs. An implication of the upper bound is the existence of a $\tilde{O}(n^\frac{10}{7})$-time drawing algorithm that computes an OPVR of an $n$-vertex $3$-connected $1$-plane graph on an integer grid of size $O(n) \times O(n)$ and with vertex complexity at most five.<br />Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1807.01247
Document Type :
Working Paper