Back to Search
Start Over
The stellar mass function of galaxies in Planck-selected clusters at 0.5 < z < 0.7: new constraints on the timescale and location of satellite quenching
- Publication Year :
- 2018
-
Abstract
- We study the abundance of star-forming and quiescent galaxies in a sample of 21 massive clusters at 0.5<z<0.7, detected with the Planck satellite. We measure the cluster galaxy stellar mass function (SMF), which is a fundamental observable to study and constrain the formation and evolution of galaxies. Our measurements are based on homogeneous and deep multi-band photometry spanning u- to the Ks-band for each cluster and are supported by spectroscopic data from different programs. The galaxy population is separated between quiescent and star-forming galaxies based on their rest-frame U-V and V-J colours. The SMF is compared to that of field galaxies at the same redshifts, using data from the COSMOS/UltraVISTA survey. We find that the shape of the SMF of star-forming galaxies does not depend on environment, while the SMF of quiescent galaxies has a significantly steeper low-mass slope in the clusters compared to the field. We estimate the environmental quenching efficiency (f_EQ), i.e. the probability for a galaxy that would normally be star forming in the field, to be quenched due to its environment. The f_EQ shows no stellar-mass dependence in any environment, but it increases from 40% in the cluster outskirts to ~90% in the cluster centres. The radial signature of f_EQ provides constraints on where the dominant quenching mechanism operates in these clusters and on what timescale. Exploring these using a simple model based on galaxy orbits obtained from an N-body simulation, we find a clear degeneracy between both parameters. For example, the quenching process may either be triggered on a long (~3 Gyr) time scale at large radii (r~8R_500), or happen well within 1 Gyr at r<R_500. The radius where quenching is triggered is at least r_quench> 0.67R_500 (95%CL). The ICM density at this location suggests that ram-pressure stripping of the cold gas is a likely cause of quenching. [Abridged]<br />Comment: 16 pages, 12 figures, accepted for publication in A&A
- Subjects :
- Astrophysics - Astrophysics of Galaxies
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1807.00820
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1051/0004-6361/201833572