Back to Search Start Over

A hybrid shifted Laplacian multigrid and domain decomposition preconditioner for the elastic Helmholtz equations

Authors :
Treister, Eran
Yovel, Rachel
Source :
Volume 497, 15 January 2024, 112622
Publication Year :
2018

Abstract

In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation. The shifted Laplacian multigrid method is a common preconditioning approach for the discretized acoustic Helmholtz equation. In some cases, like geophysical seismic imaging, one needs to consider the elastic Helmholtz equation, which is harder to solve: it is three times larger and contains a nullity-rich grad-div term. These properties make the solution of the equation more difficult for multigrid solvers. The key idea in this work is combining the shifted Laplacian with approaches for linear elasticity. We provide local Fourier analysis and numerical evidence that the convergence rate of our method is independent of the Poisson's ratio. Moreover, to better handle the problem size, we complement our multigrid method with the domain decomposition approach, which works in synergy with the local nature of the shifted Laplacian, so we enjoy the advantages of both methods without sacrificing performance. We demonstrate the efficiency of our solver on 2D and 3D problems in heterogeneous media.<br />Comment: Published in the Journal of Computational Physics

Details

Database :
arXiv
Journal :
Volume 497, 15 January 2024, 112622
Publication Type :
Report
Accession number :
edsarx.1806.11277
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jcp.2023.112622