Back to Search Start Over

Circular-shift Linear Network Codes with Arbitrary Odd Block Lengths

Authors :
Sun, Qifu Tyler
Tang, Hanqi
Li, Zongpeng
Yang, Xiaolong
Long, Keping
Publication Year :
2018

Abstract

Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When $L$ is a prime with primitive root $2$, it was recently shown that a scalar linear solution over GF($2^{L-1}$) induces an $L$-dimensional circular-shift linear solution at rate $(L-1)/L$. In this work, we prove that for arbitrary odd $L$, every scalar linear solution over GF($2^{m_L}$), where $m_L$ refers to the multiplicative order of $2$ modulo $L$, can induce an $L$-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such $L$ with $m_L$ beyond a threshold, every multicast network has an $L$-dimensional circular-shift linear solution at rate $\phi(L)/L$, where $\phi(L)$ is the Euler's totient function of $L$. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1806.04635
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TCOMM.2018.2890260