Back to Search Start Over

Bayesian estimation for quantum sensing in the absence of single-shot detection

Authors :
Dinani, Hossein T.
Berry, Dominic W.
Gonzalez, Raul
Maze, Jeronimo R.
Bonato, Cristian
Source :
Phys. Rev. B 99, 125413 (2019)
Publication Year :
2018

Abstract

Quantum information protocols, such as quantum error correction and quantum phase estimation, have been widely used to enhance the performance of quantum sensors. While these protocols have relied on single-shot detection, in most practical applications only an averaged readout is available, as in the case of room-temperature sensing with the electron spin associated with a nitrogen-vacancy center in diamond. Here, we theoretically investigate the application of the quantum phase estimation algorithm for high dynamic-range magnetometry, in the case where single-shot readout is not available. We show that, even in this case, Bayesian estimation provides a natural way to use the available information in an efficient way. We apply Bayesian analysis to achieve an optimized sensing protocol for estimating a time-independent magnetic field with a single electron spin associated to a nitrogen-vacancy center at room temperature and show that this protocol improves the sensitivity over previous protocols by more than a factor of 3. Moreover, we show that an extra enhancement can be achieved by considering the timing information in the detector clicks.<br />Comment: 7 pages + 2 pages supplementary, 5 figures, In the updated version we have added updating the probability after every single measurement. Comments are welcome

Details

Database :
arXiv
Journal :
Phys. Rev. B 99, 125413 (2019)
Publication Type :
Report
Accession number :
edsarx.1806.01249
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.99.125413