Back to Search
Start Over
A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time
- Publication Year :
- 2018
-
Abstract
- It is known for some time that a random graph $G(n,p)$ contains w.h.p. a Hamiltonian cycle if $p$ is larger than the critical value $p_{crit}= (\log n + \log \log n + \omega_n)/n$. The determination of a concrete Hamiltonian cycle is even for values much larger than $p_{crit}$ a nontrivial task. In this paper we consider random graphs $G(n,p)$ with $p$ in $\tilde{\Omega}(1/\sqrt{n})$, where $\tilde{\Omega}$ hides poly-logarithmic factors in $n$. For this range of $p$ we present a distributed algorithm ${\cal A}_{HC}$ that finds w.h.p. a Hamiltonian cycle in $O(\log n)$ rounds. The algorithm works in the synchronous model and uses messages of size $O(\log n)$ and $O(\log n)$ memory per node.<br />Comment: 17 pages; 4 figures
- Subjects :
- Computer Science - Distributed, Parallel, and Cluster Computing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1805.06728
- Document Type :
- Working Paper