Cite
Quadratic Time Algorithms Appear to be Optimal for Sorting Evolving Data
MLA
Besa, Juan Jose, et al. Quadratic Time Algorithms Appear to Be Optimal for Sorting Evolving Data. 2018. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1805.05443&authtype=sso&custid=ns315887.
APA
Besa, J. J., Devanny, W. E., Eppstein, D., Goodrich, M., & Johnson, T. (2018). Quadratic Time Algorithms Appear to be Optimal for Sorting Evolving Data.
Chicago
Besa, Juan Jose, William E. Devanny, David Eppstein, Michael Goodrich, and Timothy Johnson. 2018. “Quadratic Time Algorithms Appear to Be Optimal for Sorting Evolving Data.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1805.05443&authtype=sso&custid=ns315887.