Back to Search
Start Over
Nucleon Excited States from Lattice QCD and Hamiltonian Effective Field Theory
- Publication Year :
- 2018
-
Abstract
- An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of the lattice, the eigenstates of the Hamiltonian model can be related to the energy eigenstates observed in Lattice simulations. By taking the infinite-volume limit of HEFT, information from the lattice is linked to experiment. The approach opens a new window for the study of experimentally-observed resonances from the first principles of lattice QCD calculations. With the Hamiltonian approach, one not only describes the spectra of lattice-QCD eigenstates through the eigenvalues of the finite-volume Hamiltonian matrix, but one also learns the composition of the lattice-QCD eigenstates via the eigenvectors of the Hamiltonian matrix. One learns the composition of the states in terms of the meson-baryon basis states considered in formulating the effective field theory. One also learns the composition of the resonances observed in Nature. In this paper, we will focus on recent breakthroughs in our understanding of the structure of the $N^*(1535)$, $N^*(1440)$ and $\Lambda^*(1405)$ resonances using this method.<br />Comment: 20 pages, 9 figures, Proceedings of The 11th International Workshop on the Physics of Excited Nucleons, August 20 - 23, 2017, at the University of South Carolina, Columbia, SC
- Subjects :
- Nuclear Theory
High Energy Physics - Lattice
High Energy Physics - Phenomenology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1805.05066
- Document Type :
- Working Paper