Back to Search
Start Over
Arithmeticity of discrete subgroups containing horospherical lattices
- Source :
- Duke Math. J. 169, no. 8 (2020), 1485-1539
- Publication Year :
- 2018
-
Abstract
- Let $G$ be a semisimple real algebraic Lie group of real rank at least two and $U$ be the unipotent radical of a non-trivial parabolic subgroup. We prove that a discrete Zariski dense subgroup of $G$ that contains an irreducible lattice of $U$ is an arithmetic lattice of $G$. This solves a conjecture of Margulis and extends previous work of Hee Oh.<br />Comment: 54 pages
- Subjects :
- Mathematics - Group Theory
22E40
Subjects
Details
- Database :
- arXiv
- Journal :
- Duke Math. J. 169, no. 8 (2020), 1485-1539
- Publication Type :
- Report
- Accession number :
- edsarx.1805.00045
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1215/00127094-2019-0082