Back to Search Start Over

Arithmeticity of discrete subgroups containing horospherical lattices

Authors :
Benoist, Yves
Miquel, Sébastien
Source :
Duke Math. J. 169, no. 8 (2020), 1485-1539
Publication Year :
2018

Abstract

Let $G$ be a semisimple real algebraic Lie group of real rank at least two and $U$ be the unipotent radical of a non-trivial parabolic subgroup. We prove that a discrete Zariski dense subgroup of $G$ that contains an irreducible lattice of $U$ is an arithmetic lattice of $G$. This solves a conjecture of Margulis and extends previous work of Hee Oh.<br />Comment: 54 pages

Subjects

Subjects :
Mathematics - Group Theory
22E40

Details

Database :
arXiv
Journal :
Duke Math. J. 169, no. 8 (2020), 1485-1539
Publication Type :
Report
Accession number :
edsarx.1805.00045
Document Type :
Working Paper
Full Text :
https://doi.org/10.1215/00127094-2019-0082