Back to Search Start Over

Complementary Attributes: A New Clue to Zero-Shot Learning

Authors :
Xu, Xiaofeng
Tsang, Ivor W.
Liu, Chuancai
Publication Year :
2018

Abstract

Zero-shot learning (ZSL) aims to recognize unseen objects using disjoint seen objects via sharing attributes. The generalization performance of ZSL is governed by the attributes, which transfer semantic information from seen classes to unseen classes. To take full advantage of the knowledge transferred by attributes, in this paper, we introduce the notion of complementary attributes (CA), as a supplement to the original attributes, to enhance the semantic representation ability. Theoretical analyses demonstrate that complementary attributes can improve the PAC-style generalization bound of original ZSL model. Since the proposed CA focuses on enhancing the semantic representation, CA can be easily applied to any existing attribute-based ZSL methods, including the label-embedding strategy based ZSL (LEZSL) and the probability-prediction strategy based ZSL (PPZSL). In PPZSL, there is a strong assumption that all the attributes are independent of each other, which is arguably unrealistic in practice. To solve this problem, a novel rank aggregation framework is proposed to circumvent the assumption. Extensive experiments on five ZSL benchmark datasets and the large-scale ImageNet dataset demonstrate that the proposed complementary attributes and rank aggregation can significantly and robustly improve existing ZSL methods and achieve the state-of-the-art performance.<br />Comment: Accepted by IEEE TRANSACTIONS ON CYBERNETICS

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1804.06505
Document Type :
Working Paper