Back to Search
Start Over
On base sizes for almost simple primitive groups
- Publication Year :
- 2018
-
Abstract
- Let $G \leqslant {\rm Sym}(\Omega)$ be a finite almost simple primitive permutation group, with socle $G_0$ and point stabilizer $H$. A subset of $\Omega$ is a base for $G$ if its pointwise stabilizer is trivial; the base size of $G$, denoted $b(G)$, is the minimal size of a base. We say that $G$ is standard if $G_0 = A_n$ and $\Omega$ is an orbit of subsets or partitions of $\{1, \ldots, n\}$, or if $G_0$ is a classical group and $\Omega$ is an orbit of subspaces (or pairs of subspaces) of the natural module for $G_0$. The base size of a standard group can be arbitrarily large, in general, whereas the situation for non-standard groups is rather more restricted. Indeed, we have $b(G) \leqslant 7$ for every non-standard group $G$, with equality if and only if $G$ is the Mathieu group ${\rm M}_{24}$ in its natural action on $24$ points. In this paper, we extend this result by classifying the non-standard groups with $b(G)=6$. The main tools include recent work on bases for actions of simple algebraic groups, together with probabilistic methods and improved fixed point ratio estimates for exceptional groups of Lie type.<br />Comment: 27 pages; to appear in J. Algebra
- Subjects :
- Mathematics - Group Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1803.10955
- Document Type :
- Working Paper