Back to Search Start Over

Up to 40 % reduction of the GaAs band gap energy via strain engineering in core/shell nanowires

Authors :
Balaghi, L.
Bussone, G.
Grifone, R.
Hübner, R.
Grenzer, J.
Ghorbani-Asl, M.
Krasheninnikov, A.
Schneider, H.
Helm, M.
Dimakis, E.
Publication Year :
2018

Abstract

The great possibilities for strain engineering in core/shell nanowires have been explored as an alternative route to tailor the properties of binary III-V semiconductors without changing their chemical composition. In particular, we demonstrate that the GaAs core in GaAs/In(x)Ga(1-x)As or GaAs/In(x)Al(1-x)As core/shell nanowires can sustain unusually large misfit strains that would have been impossible in conventional thin-film heterostructures. The built-in strain in the core can be regulated via the composition and the thickness of the shell. Thick enough shells become almost strain-free, whereas the thin core undergoes a predominantly-hydrostatic tensile strain, which causes the reduction of the GaAs band gap energy. For the highest strain of 7 % in this work (obtained for x=0.54), a remarkable reduction of the band gap by 40 % was achieved in agreement with theoretical calculations. Such strong modulation of its electronic properties renders GaAs suitable for near-infrared nano-photonics and presumably high electron mobility nano-transistors.<br />Comment: 12 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1803.10873
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41467-019-10654-7