Back to Search Start Over

Network and Panel Quantile Effects Via Distribution Regression

Authors :
Chernozhukov, Victor
Fernández-Val, Iván
Weidner, Martin
Publication Year :
2018

Abstract

This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.<br />Comment: 71 pages, 8 figures, 3 tables, includes supplementary appendix

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1803.08154
Document Type :
Working Paper