Back to Search Start Over

Gravitational waves from asymmetric oscillon dynamics?

Authors :
Amin, Mustafa A.
Braden, Jonathan
Copeland, Edmund J.
Giblin Jr, John T.
Solorio, Christian
Weiner, Zachary J.
Zhou, Shuang-Yong
Source :
Phys. Rev. D 98, 024040 (2018)
Publication Year :
2018

Abstract

It has been recently suggested that oscillons produced in the early universe from certain asymmetric potentials continue to emit gravitational waves for a number of $e$-folds of expansion after their formation, leading to potentially detectable gravitational wave signals. We revisit this claim by conducting a convergence study using graphics processing unit (GPU)-accelerated lattice simulations and show that numerical errors accumulated with time are significant in low-resolution scenarios, or in scenarios where the run-time causes the resolution to drop below the relevant scales in the problem. Our study determines that the dominant, growing high frequency peak of the gravitational wave signals in the fiducial "hill-top model" in [arXiv:1607.01314] is a numerical artifact. This finding prompts the need for a more careful analysis of the numerical validity of other similar results related to gravitational waves from oscillon dynamics.<br />Comment: v2: 6 pages, 2 figures; matches PRD version

Details

Database :
arXiv
Journal :
Phys. Rev. D 98, 024040 (2018)
Publication Type :
Report
Accession number :
edsarx.1803.08047
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevD.98.024040