Back to Search
Start Over
A Bernstein type theorem for minimal hypersurfaces via Gauss maps
- Source :
- J. Funct. Anal. 278(11), 2020, 108469
- Publication Year :
- 2018
-
Abstract
- Let $M$ be an $n$-dimensional smooth oriented complete embedded minimal hypersurface in $\mathbb{R}^{n+1}$ with Euclidean volume growth. We show that if the image under the Gauss map of $M$ avoids some neighborhood of a half-equator, then $M$ must be an affine hyperplane.<br />Comment: 14 pages
- Subjects :
- Mathematics - Differential Geometry
Subjects
Details
- Database :
- arXiv
- Journal :
- J. Funct. Anal. 278(11), 2020, 108469
- Publication Type :
- Report
- Accession number :
- edsarx.1803.07132
- Document Type :
- Working Paper