Back to Search Start Over

A Bernstein type theorem for minimal hypersurfaces via Gauss maps

Authors :
Ding, Qi
Source :
J. Funct. Anal. 278(11), 2020, 108469
Publication Year :
2018

Abstract

Let $M$ be an $n$-dimensional smooth oriented complete embedded minimal hypersurface in $\mathbb{R}^{n+1}$ with Euclidean volume growth. We show that if the image under the Gauss map of $M$ avoids some neighborhood of a half-equator, then $M$ must be an affine hyperplane.<br />Comment: 14 pages

Details

Database :
arXiv
Journal :
J. Funct. Anal. 278(11), 2020, 108469
Publication Type :
Report
Accession number :
edsarx.1803.07132
Document Type :
Working Paper