Back to Search
Start Over
Autonomous Scanning Probe Microscopy in-situ Tip Conditioning through Machine Learning
- Publication Year :
- 2018
-
Abstract
- Atomic scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%. The methods described here can easily be generalized to other material systems and nanoscale imaging techniques.
- Subjects :
- Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1803.07059
- Document Type :
- Working Paper