Back to Search Start Over

Linking Entanglement Detection and State Tomography via Quantum 2-Designs

Authors :
Bae, Joonwoo
Hiesmayr, Beatrix C.
McNulty, Daniel
Source :
New J. Phys. 21 013012 (2019)
Publication Year :
2018

Abstract

We present an experimentally feasible and efficient method for detecting entangled states with measurements that extend naturally to a tomographically complete set. Our detection criterion is based on measurements from subsets of a quantum 2-design, e.g., mutually unbiased bases or symmetric informationally complete states, and has several advantages over standard entanglement witnesses. First, as more detectors in the measurement are applied, there is a higher chance of witnessing a larger set of entangled states, in such a way that the measurement setting converges to a complete setup for quantum state tomography. Secondly, our method is twice as effective as standard witnesses in the sense that both upper and lower bounds can be derived. Thirdly, the scheme can be readily applied to measurement-device-independent scenarios.<br />Comment: 16 pages, 4 figures

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Journal :
New J. Phys. 21 013012 (2019)
Publication Type :
Report
Accession number :
edsarx.1803.02708
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1367-2630/aaf8cf