Back to Search
Start Over
On a degenerate singular elliptic problem
- Source :
- Mathematische Nachrichten, 2021
- Publication Year :
- 2018
-
Abstract
- In this article we provide existence, uniqueness and regularity results of a degenerate singular elliptic boundary value problem whose prototype is given by \begin{gather*} \begin{cases} -\operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u)=\frac{f(x)}{u^\delta}\,\,\text{ in }\,\,\Omega, u>0\text{ in }\Omega,\\ u = 0 \text{ on } \partial\Omega, \end{cases} \end{gather*} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$ with $N\geq 2$, $w$ belong to the Muckenhoupt class $A_p$ for some $1<p<\infty$, $f$ is a nonnegative function belong to some Lebesgue space and $\delta>0$.<br />Comment: 24 pages
- Subjects :
- Mathematics - Analysis of PDEs
35J70, 35J75, 35D30
Subjects
Details
- Database :
- arXiv
- Journal :
- Mathematische Nachrichten, 2021
- Publication Type :
- Report
- Accession number :
- edsarx.1803.02102
- Document Type :
- Working Paper