Back to Search Start Over

On a degenerate singular elliptic problem

Authors :
Garain, Prashanta
Source :
Mathematische Nachrichten, 2021
Publication Year :
2018

Abstract

In this article we provide existence, uniqueness and regularity results of a degenerate singular elliptic boundary value problem whose prototype is given by \begin{gather*} \begin{cases} -\operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u)=\frac{f(x)}{u^\delta}\,\,\text{ in }\,\,\Omega, u>0\text{ in }\Omega,\\ u = 0 \text{ on } \partial\Omega, \end{cases} \end{gather*} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$ with $N\geq 2$, $w$ belong to the Muckenhoupt class $A_p$ for some $1<p<\infty$, $f$ is a nonnegative function belong to some Lebesgue space and $\delta>0$.<br />Comment: 24 pages

Details

Database :
arXiv
Journal :
Mathematische Nachrichten, 2021
Publication Type :
Report
Accession number :
edsarx.1803.02102
Document Type :
Working Paper