Back to Search
Start Over
High phase space density loading of a falling magnetic trap
- Publication Year :
- 2018
-
Abstract
- Loading an ultra-cold ensemble into a static magnetic trap involves unavoidable loss of phase space density when the gravitational energy dominates the kinetic energy of the ensemble. In such a case the gravitational energy is transformed into heat, making a subsequent evaporation process slower and less efficient. We apply a high phase space loading scheme on a sub-doppler cooled ensemble of Rubidium atoms, with a gravitational energy much higher than its temperature of $1~\rm{\mu K}$. Using the regular configuration of a quadrupole magnetic trap, but driving unequal currents through the coils to allow the trap center to fall, we dissipate most of the gravitational energy and obtain a 20-fold improvement in the phase space density as compared to optimal loading into a static magnetic trap. Applying this scheme, we start an efficient and fast evaporation process as a result of the sub-second thermalization rate of the magnetically trapped ensemble.
- Subjects :
- Physics - Atomic Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1802.08983
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s00340-018-7025-7