Back to Search Start Over

Order continuous operators on pre-Riesz spaces and embeddings

Authors :
Malinowski, Helena
Kalauch, Anke
Publication Year :
2018

Abstract

We investigate properties of order continuous operators on pre-Riesz spaces with respect to the embedding of the range space into a vector lattice cover or, in particular, into its Dedekind completion. We show that order continuity is preserved under this embedding for positive operators, but not in general. For the vector lattice $\ell_0^\infty$ of eventually constant sequences, we consider the pre-Riesz space of regular operators on $\ell_0^\infty$ and show that making the range space Dedekind complete does not provide a vector lattice cover of the pre-Riesz space. A similar counterexample is obtained for the directed part of the space of order continuous operators on $\ell_0^\infty$.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1802.02476
Document Type :
Working Paper