Back to Search Start Over

The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

Authors :
Zarrouk, Pauline
Burtin, Etienne
Gil-Marin, Hector
Ross, Ashley J.
Tojeiro, Rita
Paris, Isabelle
Dawson, Kyle S.
Myers, Adam D.
Percival, Will J.
Chuang, Chia-Hsun
Zhao, Gong-Bo
Bautista, Julian
Comparat, Johan
Gonzalez-Perez, Violeta
Habib, Salman
Heitmann, Katrin
Hou, Jiamin
Laurent, Pierre
Goff, Jean-Marc Le
Prada, Francisco
Rodriguez-Torres, Sergio A.
Rossi, Graziano
Ruggeri, Rossana
Sanchez, Ariel G.
Schneider, Donald P.
Tinker, Jeremy L.
Wang, Yuting
Yèche, Christophe
Baumgarten, Falk
Brownstein, Joel R.
de la Torre, Sylvain
Bourboux, Hélion du Mas des
Kneib, Jean-Paul
Palanque-Delabrouille, Nathalie
Peacock, John
Petitjean, Patrick
Seo, Hee-Jong
Zhao, Cheng
Publication Year :
2018

Abstract

We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. This dataset includes 148,659 quasars spread over the redshift range $0.8\leq z \leq 2.2$ and spanning 2112.9 square degrees. We use the Convolution Lagrangian Perturbation Theory (CLPT) approach with a Gaussian Streaming (GS) model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter halos hosting eBOSS quasar tracers. At the effective redshift $z_{\rm eff} = 1.52$, we measure the linear growth rate of structure $f\sigma_{8}(z_{\rm eff})= 0.426 \pm 0.077$, the expansion rate $H(z_{\rm eff})= 159^{+12}_{-13}(r_{s}^{\rm fid}/r_s){\rm km.s}^{-1}.{\rm Mpc}^{-1}$, and the angular diameter distance $D_{A}(z_{\rm eff})=1850^{+90}_{-115}\,(r_s/r_{s}^{\rm fid}){\rm Mpc}$, where $r_{s}$ is the sound horizon at the end of the baryon drag epoch and $r_{s}^{\rm fid}$ is its value in the fiducial cosmology. The quoted errors include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat $\Lambda$-Cold Dark Matter ($\Lambda$-CDM) cosmology with Planck parameters, and the measurement of $f\sigma_{8}$ extends the validity of General Relativity (GR) to higher redshifts($z>1$) This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.<br />Comment: 25 pages, 22 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1801.03062
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/sty506