Back to Search
Start Over
Non-existence results for the weighted $p$-Laplace equation with singular nonlinearities
- Source :
- EJDE, ISSN: 1072-669, 2019
- Publication Year :
- 2017
-
Abstract
- In this paper we present some non existence results concerning the stable solutions to the equation $$\operatorname{div}(w(x)|\nabla u|^{p-2}\nabla u)=g(x)f(u)\;\;\mbox{in}\;\;\mathbb{R}^N;\;\;p\geq 2$$ when $f(u)$ is either $u^{-\delta}+u^{-\gamma}$, $\delta,\gamma>0$ or $\exp(\frac{1}{u})$ and for a suitable class of weight functions $w,g$.
- Subjects :
- Mathematics - Analysis of PDEs
35A01, 35B93, 35J92
Subjects
Details
- Database :
- arXiv
- Journal :
- EJDE, ISSN: 1072-669, 2019
- Publication Type :
- Report
- Accession number :
- edsarx.1712.07389
- Document Type :
- Working Paper