Back to Search
Start Over
A Polyhedral Proof of a Wreath Product Identity
- Publication Year :
- 2017
-
Abstract
- In 2013, Beck and Braun proved and generalized multiple identities involving permutation statistics via discrete geometry. Namely, they recognized the identities as specializations of integer point transform identities for certain polyhedral cones. They extended many of their proof techniques to obtain identities involving wreath products, but some identities were resistant to their proof attempts. In this article, we provide a geometric justification of one of these wreath product identities, which was first established by Biagioli and Zeng.<br />Comment: 10 pages, 2 figures
- Subjects :
- Mathematics - Combinatorics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1712.00839
- Document Type :
- Working Paper