Back to Search
Start Over
Stratifying quotient stacks and moduli stacks
- Publication Year :
- 2017
-
Abstract
- Recent results in geometric invariant theory (GIT) for non-reductive linear algebraic group actions allow us to stratify quotient stacks of the form [X/H], where X is a projective scheme and H is a linear algebraic group with internally graded unipotent radical acting linearly on X, in such a way that each stratum [S/H] has a geometric quotient S/H. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) such that each stratum has a coarse moduli space.<br />Comment: 25 pages, submitted to the Proceedings of the Abel Symposium 2017
- Subjects :
- Mathematics - Algebraic Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1711.10215
- Document Type :
- Working Paper