Back to Search
Start Over
Cubic twin prime polynomials are counted by a modular form
- Source :
- Can. J. Math.-J. Can. Math. 71 (2019) 1323-1350
- Publication Year :
- 2017
-
Abstract
- We present the geometry lying behind counting twin prime polynomials in $\mathbb{F}_q[T]$ in general. We compute cohomology and explicitly count points by means of a twisted Lefschetz trace formula applied to these parametrizing varieties for cubic twin prime polynomials. The elliptic curve $X^3 = Y(Y-1)$ occurs in the geometry, and thus counting cubic twin prime polynomials involves the associated modular form. In theory, this approach can be extended to higher degree twin primes, but the computations become harder. The formula we get in degree $3$ is compatible with the Hardy-Littlewood heuristic on average, agrees with the prediction for $q \equiv 2 \pmod 3$ but shows anomalies for $q \equiv 1 \pmod 3$.<br />Comment: minor changes
- Subjects :
- Mathematics - Number Theory
11T55, 11G25
Subjects
Details
- Database :
- arXiv
- Journal :
- Can. J. Math.-J. Can. Math. 71 (2019) 1323-1350
- Publication Type :
- Report
- Accession number :
- edsarx.1711.05564
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.4153/CJM-2018-018-9