Back to Search Start Over

Testing a double AGN hypothesis for Mrk 273

Authors :
Iwasawa, K.
U, Vivian
Mazzarella, J. M.
Medling, A. M.
Sanders, D. B.
Evans, A. S.
Source :
A&A 611, A71 (2018)
Publication Year :
2017

Abstract

The ULIRG Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsec. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with nH ~4e23 cm-2 but also hinted at the possible presence of a Compton thick AGN in the N nucleus, where a black hole of 10^9 Msun is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (photon index of ~1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesise a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (photon index of 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, the deep Fe K absorption edge, and the strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by nH = 1.4(+0.7/-0.4)e24 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3e43 erg/s, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.<br />Comment: 6 pages, 5 figures, Accepted for publication in A&A

Details

Database :
arXiv
Journal :
A&A 611, A71 (2018)
Publication Type :
Report
Accession number :
edsarx.1711.01750
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/201731662